Mitral VIV planning and pitfalls

Vinayak Bapat Columbia University Medical Center

Speaker's name : Vinayak, Bapat, New york

⊿ I have the following potential conflicts of interest to report:

: Consultant: Edwards Lifesciences Medtronic Inc Abbott 4Tech 4C Cephea

Mitral VIV

Large valves Only Stented valves

Less chance of PPM Ease of positioning

COLUMBIA UNIVERSITY MEDICAL CENTER

CARDIOVASCULAR RESEARCH F O U N D A T I O N A Passion for Innovation COLUMBIA UNIVERSITY MEDICAL CENTER

- UWhich Surgical Valve
- UWhat size
- Uhich TAVI valve I want to use
- UWhat size
- □ Approach (Trans-septal/ TA)
- Risk of LVOT Obstruction
- Expected residual gradient
- Proper positioning during procedure
- Anticoagulation?

Each valve is Unique

Each Valve Looks different

Example

- Hancock II
- CE Std
- CE SAV
- Mosaic
- Perimount
- Biocor/Epic
- Magna
- Pericarbon More

Implant Card Operation Note VIV App Manufacturer Records

Hancock 2

Medtronic

Porcine leaflets Leaflets sutured inside the stent Markers – Sewing ring and stent post

Which Surgical Valve

Which TAVI valve I want to use

UWhat size

Approach (TF/alternate)

Risk of Coronary Obstruction

Expected residual gradient

Proper positioning during procedure

Coronary and hemodynamic assessment

Anticoagulation?

Size

Hancock 2– size 29

- Stent ID 26
- True ID 24 **
- Height 20.5

Why Sizing is Critical in Mitral

Very unique indeed!

Why did this happen

- Wrong oversize?
 - Difference between aortic and mitral VIV

Closing pressures Aortic - 1mm Oversize may be good enough

Mitral – 2 or 3mm oversize may be required

Conical Shape

Which Surgical Valve What size Which TAVI valve & Size

Approach (Trans-septal/TA) Risk of LVOT Obstruction Expected residual gradient Proper positioning during procedure

Coronary and hemodynamic assessment

Anticoagulation?

Trans-septal

- Preferred approach
- Rule out septal issues *
- Site of puncture
- Septal dilatation
- Valve crossing
- Preshaped wires

- Which Surgical Valve What size Which TAVI valve & Size Approach (TF/alternate) Disk of LVOT Obstruction
- Expected residual gradient
- Proper positioning during procedure
- Coronary and hemodynamic assessment

Anticoagulation?

Is a possibility after Mitral 1. VIV 2. VIR 3. MAC 4. TMVR

Factors Influencing LVOTO

A Passion for Innovation

Deeper placement in LV

Flaring

AMA angle

Septal bulge

LVOTO Etiology

Less Chance if AMA angle is obtuse Greater Chance if AMA angle is less obtuse

LVOT Obstruction

Can we predict it?

10 mm ---- 12 mm 0.8 Fraction block 0.6 0.4 0.2 0 90 105 120 135 150 165 180 Valve plane angle 10mm 180 150 135 115 90 12mm

Fraction opf Aorta blocked by 10mm and 12 mm valve as a function of valve plane angle

LVOTO Risk Pericardial> Porcine

Which Surgical Valve What size Which TAVI valve & Size Approach (TF/alternate) **Risk of Coronary Obstruction Q** Expected residual gradient Proper positioning during procedure Coronary and hemodynamic assessment **Anticoagulation**?

Example (77 yrs old, female, BSA: 1.46)

23 S3 in Epic/Biocor 25 True ID 21mm

Initial Gradient 11 Post true Balloon 3

Expected Gradient

Reflects

SHV (True ID) ----- THV Used and Position

True ID < 21 : Expect higher residual gradients RECONSIDER SURGERY*

Surgery

Int/LowRisk patient, Risk of LVOT obstruction High residual gradient

VIV

High Risk patient, Acute regurgitation

Which Surgical Valve What size Which TAVI valve & Size **A**pproach (TF/alternate) **Risk of Coronary Obstruction Expected residual gradient** Proper positioning during procedure **Anticoagulation**?

Correct positioning

Too High Leads to Leakage through the frame

Which Surgical Valve What size Which TAVI valve & Size Approach (TF/alternate) **D** Risk of Coronary Obstruction **Expected residual gradient** Proper positioning during procedure Anticoagulation?

Anticoagulation ?

- Mandatory:
 - If in AF
 - Smaller VIV (Sapien 3 size 23)
 - Higher residual gradient
 - ~Evidence of leaflet thrombosis
- At least for three months

VIV Apps

App Store Google market

- Correct Patient
- Correct VIV combination
- Correct position

